Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Chem Eng J ; 440: 135830, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1739597

ABSTRACT

Outbreaks of airborne pathogens pose a major threat to public health. Here we present a single-step nanocoating process to endow commercial face mask filters with photobiocidal activity, triboelectric filtration capability, and washability. These functions were successfully achieved with a composite nanolayer of silica-alumina (Si-Al) sol-gel, crystal violet (CV) photosensitizer, and hydrophobic electronegative molecules of 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (PFOTES). The transparent Si-Al matrix strongly immobilized the photosensitizer molecules while dispersing them spatially, thus suppressing self-quenching. During nanolayer formation, PFOTES was anisotropically rearranged on the Si-Al matrix, promoting moisture resistance and triboelectric charging of the Si-Al/PFOTES-CV (SAPC)-coated filter. The SAPC nanolayer stabilized the photoexcited state of the photosensitizer and promoted redox reaction. Compared to pure-photosensitizer-coated filters, the SAPC filter showed substantially higher photobiocidal efficiency (∼99.99 % for bacteria and a virus) and photodurability (∼83 % reduction in bactericidal efficiency for the pure-photosensitizer filter but ∼0.34 % for the SAPC filter after 72 h of light irradiation). Moreover, after five washes with detergent, the SAPC filter maintained its photobiocidal and filtration performance, proving its reusability potential. Therefore, this SAPC nanolayer coating provides a practical strategy for manufacturing an antimicrobial and reusable mask filter for use during the ongoing COVID-19 pandemic.

2.
Int J Environ Res Public Health ; 18(16)2021 08 10.
Article in English | MEDLINE | ID: covidwho-1357545

ABSTRACT

The present study was performed to quantitatively evaluate the effects of air purifiers on the spread of COVID-19 and to suggest guidelines for their safe use. To simulate respiratory droplet nuclei and nano-sized virus aggregates, deionized water containing 100 nm of polystyrene latex (PSL) particles was sprayed using a vibrating mesh nebulizer, and the changes in the particle number concentration were measured for various locations of the particle source and air purifier in a standard 30 m3 test chamber. The spread of the simulated respiratory droplet nuclei by the air purifier was not significant, but the nano-sized aggregates were significantly affected by the airflow generated by the air purifier. However, due to the removal of the airborne particles by the HEPA filter contained in the air purifier, continuous operation of the air purifier reduced the number concentration of both the simulated respiratory droplet nuclei and nano-sized aggregates in comparison to the experiment without operation of the air purifier. The effect of the airflow generated by the air purifier on the spread of simulated respiratory droplet nuclei and nano-sized aggregates was negligible when the distance between the air purifier and the nebulizer exceeded 1 m.


Subject(s)
Air Filters , SARS-CoV-2/isolation & purification , Viruses , Air Microbiology , COVID-19/prevention & control , Humans , Viruses/isolation & purification
3.
Nano Lett ; 21(2): 1017-1024, 2021 01 27.
Article in English | MEDLINE | ID: covidwho-1028800

ABSTRACT

Bioaerosols, including infectious diseases such as COVID-19, are a continuous threat to global public safety. Despite their importance, the development of a practical, real-time means of monitoring bioaerosols has remained elusive. Here, we present a novel, simple, and highly efficient means of obtaining enriched bioaerosol samples. Aerosols are collected into a thin and stable liquid film by the unique interaction of a superhydrophilic surface and a continuous two-phase centrifugal flow. We demonstrate that this method can provide a concentration enhancement ratio of ∼2.4 × 106 with a collection efficiency of ∼99.9% and an aerosol-into-liquid transfer rate of ∼95.9% at 500 nm particle size (smaller than a single bacterium). This transfer is effective in both laboratory and external ambient environments. The system has a low limit of detection of <50 CFU/m3air using a straightforward bioluminescence-based technique and shows significant potential for air monitoring in occupational and public-health applications.


Subject(s)
Aerosols , Bacteria/isolation & purification , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Air Microbiology , Biomass , Limit of Detection , Luminescence , Nanoparticles , Particle Size , Public Health , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL